Multiresolutional graph cuts for brain extraction from MR images

نویسندگان

  • Yong-Sheng Chen
  • Li-Fen Chen
  • Yi-Ting Wang
چکیده

This paper presents a multiresolutional brain extraction framework which utilizes graph cuts technique to classify head magnetic resonance (MR) images into brain and non-brain regions. Starting with an over-extracted brain region, we refine the segmentation result by trimming non-brain regions in a coarse-to-fine manner. The extracted brain at the coarser level will be propagated to the finer level to estimate foreground/background seeds as constraints. The short-cut problem of graph cuts is reduced by the proposed pre-determined foreground from the coarser level. In order to consider the impact of the intensity inhomogeneities, we estimate the intensity distribution locally by partitioning volume images of each resolution into different numbers of smaller cubes. The graph cuts method is individually applied for each cube. Compared with four existing methods, the proposed method performs well in terms of sensitivity and specificity in our experiments for performance evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

Comparison the Accuracy of Fetal Brain Extraction from T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR Image with T2-True Fast Imaging with Steady State Free Precession (TRUFI) MR Image by Level Set Algorithm

Background Access to appropriate images of fetal brain can greatly assist to diagnose of probable abnormalities. The aim of this study was to compare the suitability of T2-True Fast Imaging with Steady State Free Precession (T2-TRUFI), and T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (T2- HASTE( magnetic resonance imaging (MRI) to extract the fetal brain using the level set algorithm...

متن کامل

Generating the synthetic CT (sCT) and synthetic MR (sMR: sT1w/sT2w) images of the brain using atlas based method

Introduction: Radiation therapy planning (RTP) is one of the clinical applications in which both CT scan and MRI are used. MR and CT images are applied to determine the target volume and calculation of dose distribution, respectively. In addition, using two imaging modalities increases the department workload and cost. In this study, an algorithm was presented to create synthet...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

MRF's forMRI's: Bayesian Reconstruction of MR Images via Graph Cuts

Markov Random Fields (MRF’s) are an effective way to impose spatial smoothness in computer vision. We describe an application of MRF’s to a non-traditional but important problem in medical imaging: the reconstruction of MR images from raw fourier data. This can be formulated as a linear inverse problem, where the goal is to find a spatially smooth solution while permitting discontinuities. Alth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013